MECHANISM OF THE BECKMANN REARRANGEMENT OF a, B-UNSATURATED KETOXIMES

Institute of Organic Chemistry, University of Basel, CH-4056.

(Received in UK 2 September 1976; accepted for publication 27 September 1976)

Recent studies indicate that anti-vinyl ketoxime derivatives, such as <u>1</u> (R = ArSO_2), do not readily undergo solvolytic Beckmann rearrangement to enamides <u>4</u> unless the planes of the C=C and C=N groups intersect at an angle of ca. 90°, for only then is π -3 assisted ionization to a cationic azirin derivative <u>2</u> possible ¹. If such participation is excluded for structural reasons, as in fiveor six-membered cyclic α,β -unsaturated ketoximes, more drastic reaction conditions, such as conc. H₂SO₄, PCl₅ or PPA, are required to induce vinyl migration, and yields of enamides <u>4</u> are as a rule low ¹, ².

Whereas π -3 participation is well established in aryl migration ³, evidence for a cyclic intermediate <u>2</u> in vinyl migration appears to be still lacking. Also, no quantitative data concerning the relative rates of alkyl and vinyl migration are available. Furthermore, in the presence of strongly electron releasing α -substituents R¹ in <u>1</u> solvolytic fragmentation ⁴ leading to a stabilized vinyl cation <u>5</u> and a nitrile (scheme, route F) could occur. Recombination of these fragments to a nitrilium ion <u>3</u> ⁵ followed by hydration would also account for the formation of the enamide <u>4</u>. Finally, electron releasing α -substituents R¹ could also promote the formation of an azetinium ion <u>7</u> and its resultant products by π -4 participation. A study of the products and rates of α - and β -substituted anti-vinyl-methylketoxime 2,4-dinitrophenyl (DNP) ethers <u>1a-1i</u> including the saturated analogue of <u>1a</u>, i.e. <u>8</u> (R = 2,4-(NO₂)₂C₆H₃), has now resolved these questions.

With the exception of <u>le</u>⁶, the DNP-ethers <u>la-li</u> underwent practically quantitative rearrangement to the enamides <u>4</u> which were hydrolysed to the corresponding ketones <u>9</u> by 4N acid. In no case could products derived from the azetinium ion <u>7</u> be detected.

That vinyl migration occurs with π -3 participation follows from the rate comparisons in the Table. Thus, DNP-ether <u>la</u> reacts 2370 times as fast as the saturated analogue <u>8</u>, but the rate is drastically reduced when the β -methyl groups are replaced by hydrogen, as in <u>lb</u>, <u>lc</u> and <u>ld</u>. This demonstrates that considerable positive charge is generated at C(β) in the transition state.

On the other hand <u>la</u> reacts only 15 times faster than <u>le</u> which lacks the α -phenyl group. Furthermore, the electron-donating p-substituents CH₃, CH₃O and (CH₃)₂N in <u>lf</u>, lg and <u>lh</u> increase the rate by factors of only 1.2, 1.6 and 9, respectively, while

					Table					
First	order	rate	constants	for	2,4-DNP-ethe	rs in	80 vol.%	ethanol	(90.00°)	a
	R ¹			r ²	R ³	1	k(s ⁻¹)		^k rel	
<u>la</u>	C61	^H 5		сн ₃	CH3	2.90	x 10 ⁻² b		2370	
$\underline{1b}$	C 6 ^I	H ₅		H	сн ₃	2.60	$\times 10^{-4}$		21.3	
lc	C ₆ I	H ₅		снз	н	8.80	$\times 10^{-5}$		7.2	
<u>1d</u>	۲	H ₅		н	Н	1.12	$\times 10^{-5}$ b		0.93	2
le	н	-		СНз	CH ₃	1.89	$\times 10^{-3}$ b		155	
<u>lf</u>	p-(снасен	44	СН3	Снз	3.43	$\times 10^{-2}$ b		2810	
lg	p-0	CH ₃ OC ₆	5 ^H 4	СНЗ	CH ₃	4.62	$\times 10^{-2}$ b		3790	
<u>1h</u>	p-	(CH ₃)	NC ₆ H ₄	СНЗ	CH ₃	2,60	$\times 10^{-1}$ b		21300	
<u>li</u> /	p-1	NO2C6H	H ₄	СН3	CH ₃	2.74	$\times 10^{-3}$		225	
<u>8</u>		- 0	•			1.22	x 10 ⁻⁵		1	

a) Containing three equivalents of triethylamine

b) Extrapolated from measurements at three other temperatures

the NO₂ group in <u>li</u> lowers it by a factor of 10. These relatively small effects disprove the generation of a sizable positive charge at $C(\alpha)$ in the transition state, a conclusion supported by the excellent correlation of log k of <u>la</u> and <u>lf-li</u> with Hammett's σ_p constants and by the resultant *g* value of -l.18. As shown previously ⁷ solvolysis rates of p-substituted α -bromostyrenes <u>lo</u> correlate well with Brown's σ_p^+ constants, *g* being -6.6. Concerted fragmentation to vinyl cations <u>5</u> as well as π -4 participation are therefore precluded.

These findings indicate that $\pi'-3$ participation in the transition state <u>11</u> of the ionization of the DNP-ethers <u>1</u> leads to the ion pairs <u>2</u>, the early stage of the reaction being somewhat facilitated by α -aryl substituents with +M-effects, presumably because these increase the electron density in the vinyl group. The subse-

quent fast steps leading to enamides $\underline{4}$ can be rationalized in different ways: a) The cation in $\underline{2}$ isomerizes to the nitrilium ion $\underline{3}^{-8}$ which adds water to form the iminol tautomer $\underline{6}$ (R = H) of the enamide $\underline{4}$. b) Nucleophilic attack on $\underline{2}$ by water leads directly to $\underline{6}$ (R = H) whereas attack by weakly nucleofugal and therefore strongly nucleophilic counter ions RO⁻ affords iminol ethers or esters $\underline{6}$. The latter possibility is clearly demonstrated by the oxime acetate $\underline{1h}$ (R = COCH₃) which in refluxing 80 % ethanol furnishes the diacetylimide $\underline{12}$ in 71 % yield. As is well known these compounds are formed by a Mumm rearrangement ⁹ of an acyl imidate $\underline{6}$ (R = COCH₃) which is therefore a true intermediate in this case. The latter in turn could arise by attack of acetate ion on the azirim cation in $\underline{2}$ or the nitrilium ion in $\underline{3}$ (R = COCH₃). The fact that acetate ion competes successfully with the nucleophilic solvent points to the intermediacy of ion pairs $\underline{2}$ or $\underline{3}$ (R = COCH₃).

REFERENCES

- T. Sato, W. Wakatsuka & K. Amano, Tetrahedron <u>27</u>, 5381 (1971); I. Fleming & R.B. Woodward, J. chem. Soc. Perkin Trans. I, <u>1973</u>, 1653.
- 2) M. Kobayashi & H. Mitsuhashi, Chem. Pharm. Bull. 20, 1567 (1972); H. Alper & E.C.H. Keung, J. heterocyclic Chem. <u>10</u>, 637 (1973).
- 3) R. Huisgen, J. Witte, H. Walz & W. Jira, Liebigs Annalen Chem. <u>604</u>, 191 (1957);
 R. Huisgen, J. Witte & I. Ugi, Chem. Ber. <u>90</u>, 1844 (1957); R. Huisgen, J. Witte
 & W. Jira, ibid. <u>90</u>, 1850 (1957).
- 4) C.A. Grob & P.W. Schiess, Angew. Chemie, internat. Edit., 6, 1 (1967).
- 5) This reaction is analogous to the Ritter Reaction of Carbenium ions.
- 6) The yield of enamide from <u>le</u> is lowered due to its rapid hydrolysis to volatile products.
- 7) C.A. Grob & H.R. Pfändler, Helv. chim. acta 54, 2060 (1971).
- 8) C.A. Grob, H.P. Fischer, W. Raudenbusch & J. Zergenyi, ibid. 47, 1003 (1964).
- 9) Organic Reactions 14, 1, 31, Wiley, New York 1965.